Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Benzyl-3-nitroaniline

Vladimir Stilinović^a* and Tomislav Portada^b

^aLaboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102 A, HR-10000 Zagreb, Croatia, and ^bDepartment of Organic Chemistry and Biochemistry, Ruder Bošković Institute, PO Box 180, HR-10002 Zagreb, Croatia Correspondence e-mail: vstilinovic@chem.pmf.hr

Received 15 September 2011; accepted 14 October 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.081; data-to-parameter ratio = 8.1.

The molecule of the title compound, $C_{13}H_{12}N_2O_2$, has a bent conformation with a torsion angle about the central C–N bond of 72.55 (19)°. In the crystal, the molecules are connected *via* classical N–H···O and non-classical C–H···O hydrogen bonds into chains along [101]. The dihedral angle between the ring planes is 86.0 (6)°.

Related literature

For the synthesis of the title compound, see: Magyarfalvi (2008). For related structures, see: Betz *et al.* (2011); Iwasaki *et al.* (1988).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{12}N_2O_2\\ M_r = 228.25\\ \text{Monoclinic, } P2_1\\ a = 5.3359 \ (2) \ \text{\AA}\\ b = 19.2285 \ (6) \ \text{\AA}\\ c = 5.6017 \ (2) \ \text{\AA}\\ \beta = 97.334 \ (3)^\circ \end{array}$

 $V = 570.04 (3) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K $0.41 \times 0.29 \times 0.23 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer 7072 measured reflections 1280 independent reflections 1093 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.081$	independent and constrained
S = 1.01	refinement
1280 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ Å}^{-3}$
158 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
3 restraints	

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1-H1\cdotsO1^{i}$	0.84 (2)	2.44 (2)	3.263 (2)	166 (2) 160
$C13 - H13 \cdots O1^{ii}$ $C7 - H74 \cdots O1^{iii}$	0.93	2.43 2.67 2.61	3.293(2) 3.218(2)	109 125 130

Symmetry codes: (i) x + 1, y, z - 1; (ii) x, y, z - 1; (iii) x + 1, y, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program used to solve structure: *SHELXS97* (Sheldrick, 2008); program used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997), *POV-RAY* (Cason *et al.*, 2002) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999), *PLATON* (Spek, 2009) and *PARST* (Nardelli, 1995).

The authors would like to thank the Ministry of Science, Education and Sport, Republic of Croatia, for financial support of this work through grants 119–1193079–3069, 006–0000000–3216 and 098–0982904–2912.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2302).

References

Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1195.

- Cason, C. J., Froehlich, T., Kopp, N. & Parker, R. (2002). *POV-Ray*. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Iwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085–1090.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Magyarfalvi, G. (2008). Preparatory problems for the 40th International Chemistry Olympiad, edited by G. Magyarfalvi, p. 48. Chemistry Olympiad, Budapest.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2008). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o3013 [doi:10.1107/S1600536811042632]

N-Benzyl-3-nitroaniline

V. Stilinovic and T. Portada

Comment

The synthesis of the title compound was a part of Preparatory problems for the 40th International Chemistry Olympiad (Magyarfalvi, 2008). It was prepared and crystalized as a part of the laboratory work with high–school students.

The *N*-methyl–3–nitroaniline system is almost perfectly planar (the mean plane of the phenyl ring is at an angle of 1.5 (2)° with the mean plane of the angle nitro group, and 1.4 (2)° with the mean plane of the central C1–N1–C7. The phenyl substituent is at an angle of 86.0 (2)° to the rest of the molecule. The C1–N1–C7–C8 torsion angle is 72.55 (19)°. This conformation is similar to thet reported by Betz *et al.* (2011) for the unsubstituited *N*–benzylaniline.

The molecules are connected into chains along the $[1 \ 0 \ \overline{1}]$ direction by N1—H1…O1ⁱ classical hydrogen bonds of $(N1…O1^i = 3.263 \ (2)Å)$, which are further fortified by non–classical one C6—H6…O2ⁱ with contact C6…O2ⁱⁱ of 3.364 (2)Å. Interestingly, in a similar compound, *N*–benzyl–4–nitroaniline (Iwasaki *et al.*, 1988), the N—H…O bonding is entirely absent, which demonstrates the effect of changing the position of the nitro group on tha supramolecular aggregation.

The chains are further interconnected *via* long non-classical C—H···O (C13—H13···O1ⁱⁱ of 3.293 (2)Å and C7—H7A···O1ⁱⁱⁱ of 3.318 (1)Å) contacts into layers perpendicular to the *b* axis.

Symmetry codes: (i) *x*+1, *y*, *z*-1; (ii) *x*, *y*, *z*-1; (iii) *x*+1, *y*, *z*.

Experimental

The title compound was prepared using a slightly modified procedure (Magyarfalvi, 2008) and isolated in a form of yellow crystalline powder. A sample of approximately 100 mg of the compound was dissolved in approximately 10 ml of hot ethanol. The solution was left to cool to room temperature, filtered, and the filtrate was left to crystallize by slow evaporation. The single crystalls suitable for X–ray study were obtained after approximatelly 4 days.

Refinement

The amine hydrogen atom was locates from the electron fifference map and isotropical refined. All H atoms bonded to carbon atoms were placed geometrically and included in the refinement in the riding–model approximation with C—H distances of 0.93Å for aryl and 0.97Å for CH₂. In the refinement these H atoms were included with $U_{iso} = 1.2U_{eq}(C)$.

Since there are no heavy atoms in the structure, the Friedel pairs (1186) were merged for the final refinement.

Figures

Fig. 1. The molecular structure of title compound with the atom labeling scheme. Displacement ellipsoids are shown at 30% probability level. Hydrogen atoms are shown as a spheres of arbitrary radius.

Fig. 2. Chains in the structure of the title compound viewed along the $[1 \ 0 \ \overline{1}]$ direction. Hydrogen bonds are indicated by dashed lines.

N-benzyl-3-nitroaniline

Crystal data	
$C_{13}H_{12}N_2O_2$	Z = 2
$M_r = 228.25$	F(000) = 240
Monoclinic, P2 ₁	$D_{\rm x} = 1.33 {\rm ~Mg~m}^{-3}$
Hall symbol: P 2yb	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.3359 (2) Å	$\theta = 4.6 - 54.0^{\circ}$
<i>b</i> = 19.2285 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 5.6017 (2) Å	<i>T</i> = 295 K
$\beta = 97.334 \ (3)^{\circ}$	Plate, yellow
$V = 570.04 (3) \text{ Å}^3$	$0.41\times0.29\times0.23~mm$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer	1093 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.017$
graphite	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 3.8^{\circ}$
φ and ω scans	$h = -6 \rightarrow 6$
7072 measured reflections	$k = -24 \rightarrow 24$
1280 independent reflections	$l = -7 \rightarrow 7$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.081$	H atoms treated by a mixture of independent and constrained refinement
S = 1.01	$w = 1/[\sigma^2(F_0^2) + (0.0615P)^2]$
5 - 1.01	where $P = (F_0^2 + 2F_c^2)/3$

1280 reflections	$(\Delta/\sigma)_{max} = 0.003$
158 parameters	$\Delta\rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
H1	0.844 (5)	0.2074 (13)	0.076 (5)	0.063 (6)*
C3	0.2527 (3)	0.28407 (9)	0.4595 (3)	0.0412 (4)
C2	0.4146 (3)	0.23191 (9)	0.4090 (3)	0.0423 (4)
H2	0.4181	0.1896	0.4896	0.051*
C1	0.5737 (3)	0.24414 (9)	0.2335 (3)	0.0454 (4)
N2	0.0876 (3)	0.27154 (8)	0.6441 (3)	0.0489 (4)
C6	0.5584 (3)	0.30889 (10)	0.1187 (4)	0.0516 (4)
Н6	0.6626	0.318	0.0013	0.062*
C4	0.2364 (4)	0.34794 (9)	0.3472 (4)	0.0528 (5)
H4	0.1244	0.382	0.3858	0.063*
N1	0.7446 (4)	0.19560 (9)	0.1759 (4)	0.0663 (5)
O2	-0.0522 (3)	0.31801 (9)	0.6928 (3)	0.0763 (5)
01	0.0942 (3)	0.21462 (8)	0.7433 (3)	0.0645 (4)
C5	0.3954 (4)	0.35886 (10)	0.1740 (4)	0.0579 (5)
H5	0.3905	0.4013	0.0939	0.069*
C8	0.5655 (3)	0.07735 (9)	0.2164 (3)	0.0496 (4)
C7	0.7768 (4)	0.12849 (11)	0.2881 (5)	0.0616 (5)
H7A	0.7937	0.1347	0.4612	0.074*
H7B	0.9335	0.1085	0.2492	0.074*
C11	0.1852 (4)	-0.01992 (12)	0.0930 (5)	0.0705 (6)
H11	0.0576	-0.0523	0.0518	0.085*
C13	0.4114 (4)	0.08153 (12)	-0.0021 (3)	0.0666 (6)
H13	0.4348	0.1172	-0.1093	0.08*
C10	0.3354 (5)	-0.02457 (12)	0.3060 (5)	0.0739 (6)
H10	0.3118	-0.0606	0.4115	0.089*
C9	0.5222 (4)	0.02354 (12)	0.3673 (4)	0.0651 (5)
H9	0.6224	0.0197	0.5152	0.078*
C12	0.2233 (5)	0.03297 (16)	-0.0607 (4)	0.0764 (6)
H12	0.1207	0.0363	-0.2075	0.092*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C3	0.0386 (7)	0.0460 (9)	0.0405 (8)	-0.0039 (7)	0.0116 (6)	-0.0028 (6)
C2	0.0431 (8)	0.0405 (8)	0.0456 (9)	-0.0033 (7)	0.0142 (7)	0.0021 (7)
C1	0.0417 (8)	0.0458 (9)	0.0515 (10)	-0.0066 (7)	0.0164 (7)	-0.0044 (7)
N2	0.0472 (8)	0.0573 (9)	0.0444 (8)	-0.0030 (7)	0.0150 (6)	-0.0023 (7)
C6	0.0508 (10)	0.0569 (10)	0.0510 (10)	-0.0126 (9)	0.0211 (8)	0.0032 (8)
C4	0.0524 (10)	0.0441 (10)	0.0643 (12)	0.0042 (8)	0.0163 (9)	0.0017 (8)
N1	0.0602 (10)	0.0540 (10)	0.0943 (13)	0.0002 (8)	0.0470 (10)	-0.0012 (9)
O2	0.0773 (10)	0.0795 (11)	0.0811 (11)	0.0173 (9)	0.0447 (9)	-0.0031 (8)
O1	0.0718 (9)	0.0671 (9)	0.0601 (8)	-0.0025 (7)	0.0301 (7)	0.0108 (7)
C5	0.0603 (11)	0.0484 (11)	0.0671 (12)	-0.0028 (9)	0.0164 (10)	0.0147 (8)
C8	0.0481 (9)	0.0457 (10)	0.0577 (10)	0.0089 (8)	0.0171 (8)	-0.0069 (7)
C7	0.0468 (10)	0.0517 (10)	0.0892 (16)	0.0051 (8)	0.0201 (10)	-0.0067 (10)
C11	0.0620 (12)	0.0589 (12)	0.0913 (17)	-0.0032 (10)	0.0128 (12)	-0.0219 (9)
C13	0.0778 (14)	0.0645 (12)	0.0581 (13)	0.0059 (11)	0.0112 (11)	0.0051 (9)
C10	0.0851 (16)	0.0572 (12)	0.0803 (16)	-0.0117 (12)	0.0134 (13)	0.0030 (11)
C9	0.0722 (12)	0.0600 (12)	0.0617 (12)	-0.0029 (11)	0.0030 (10)	0.0041 (10)
C12	0.0778 (14)	0.0816 (14)	0.0653 (13)	0.0054 (13)	-0.0079 (11)	-0.0111 (10)

Geometric parameters (Å, °)

C3—C2	1.376 (2)	С5—Н5	0.93
C3—C4	1.378 (2)	C8—C9	1.374 (3)
C3—N2	1.461 (2)	C8—C13	1.3868 (17)
C2—C1	1.398 (2)	C8—C7	1.511 (3)
С2—Н2	0.93	С7—Н7А	0.97
C1—N1	1.372 (2)	С7—Н7В	0.97
C1—C6	1.399 (3)	C11—C10	1.353 (4)
N2—O2	1.217 (2)	C11—C12	1.364 (4)
N2—O1	1.226 (2)	C11—H11	0.93
C6—C5	1.358 (3)	C13—C12	1.379 (4)
С6—Н6	0.93	С13—Н13	0.93
C4—C5	1.384 (3)	С10—С9	1.371 (3)
C4—H4	0.93	С10—Н10	0.93
N1—C7	1.436 (3)	С9—Н9	0.93
N1—H1	0.85 (3)	С12—Н12	0.93
C2—C3—C4	124.08 (15)	C9—C8—C13	117.32 (18)
C2—C3—N2	118.44 (14)	C9—C8—C7	120.31 (17)
C4—C3—N2	117.48 (15)	C13—C8—C7	122.36 (19)
C3—C2—C1	118.37 (15)	N1—C7—C8	115.13 (19)
С3—С2—Н2	120.8	N1—C7—H7A	108.5
C1—C2—H2	120.8	С8—С7—Н7А	108.5
N1—C1—C2	122.14 (17)	N1—C7—H7B	108.5
N1—C1—C6	119.94 (16)	С8—С7—Н7В	108.5
C2—C1—C6	117.90 (16)	H7A—C7—H7B	107.5

O2—N2—O1	122.47 (15)	C10-C11-C12	119.1 (2)
O2—N2—C3	118.66 (16)	C10—C11—H11	120.4
O1—N2—C3	118.87 (14)	C12—C11—H11	120.4
C5—C6—C1	121.74 (16)	C12—C13—C8	120.2 (2)
С5—С6—Н6	119.1	C12—C13—H13	119.9
С1—С6—Н6	119.1	C8—C13—H13	119.9
C3—C4—C5	116.54 (16)	C11—C10—C9	120.4 (2)
C3—C4—H4	121.7	C11—C10—H10	119.8
C5—C4—H4	121.7	С9—С10—Н10	119.8
C1—N1—C7	123.70 (18)	C10—C9—C8	121.9 (2)
C1—N1—H1	117.6 (17)	С10—С9—Н9	119.1
C7—N1—H1	118.6 (17)	С8—С9—Н9	119.1
C6—C5—C4	121.36 (17)	C11—C12—C13	121.1 (2)
С6—С5—Н5	119.3	C11—C12—H12	119.4
C4—C5—H5	119.3	C13—C12—H12	119.4

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1····O1 ⁱ	0.84 (2)	2.44 (2)	3.263 (2)	166 (2)
C6—H6····O2 ⁱ	0.93	2.45	3.364 (2)	169
C13—H13···O1 ⁱⁱ	0.93	2.67	3.293 (2)	125
C7—H7A···O1 ⁱⁱⁱ	0.97	2.61	3.318 (2)	130
Summatry adday (i) $w + 1 = w = 1$; (ii) $w = w = 1$; (iii)				

Symmetry codes: (i) *x*+1, *y*, *z*-1; (ii) *x*, *y*, *z*-1; (iii) *x*+1, *y*, *z*.

Fig. 1

